Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions

Unraveling Relaxor Phase Transitions by k-Space Spectroscopy

KLAUS BETZLER, CHRISTOPH GÖDEKER, URS HEINE, UWE VOELKER

2009 WILLIAMSBURG WORKSHOP ON FUNDAMENTAL PHYSICS OF FERROELECTRICS

ショック 正則 スポットボット 白マ

Relaxor Ferroelectrics

G. A. Smolenskii 1954: Segnetoelektricheskie svoistva tverdykh rastvorov stannata bariya v titanate bariya

G. A. Smolenskii 1958: Dielectric polarization and losses of some complex compounds

Many Others: ...

. . .

L. Eric Cross 1987: Relaxor ferroelectrics

▲□▶▲冊▶▲≡▶▲≡▶ ≡|= ∽)へ(~)

Eur. Phys. J. B 14, 633-637 (2000)

Phase transitions in $Sr_{0.61}Ba_{0.39}Nb_2O_6{:}Ce^{3+}{:}$ II. Linear birefringence studies of spontaneous and precursor polarization

P. Lehnen¹, W. Kleemann^{1, a}, Th. Woike², and R. Pankrath³

Eur. Phys. J. B 14, 633-637 (2000)

Phase transitions in $Sr_{0.61}Ba_{0.39}Nb_2O_6{:}Ce^{3+}{:}$ II. Linear birefringence studies of spontaneous and precursor polarization

P. Lehnen¹, W. Kleemann^{1, a}, Th. Woike², and R. Pankrath³

PHYSICAL REVIEW B, VOLUME 64, 134109 (2001)

⁹³Nb NMR of the random-field-dominated relaxor transition in pure and doped SBN

R. Blinc, A. Gregorovič, B. Zalar, R. Pirc, and J. Seliger W. Kleemann S. G. Lushnikov R. Pankrath

Eur. Phys. J. B 14, 633-637 (2000)

Phase transitions in $Sr_{0.61}Ba_{0.39}Nb_2O_6{:}Ce^{3+}{:}$ II. Linear birefringence studies of spontaneous and precursor polarization

P. Lehnen¹, W. Kleemann^{1, a}, Th. Woike², and R. Pankrath³

PHYSICAL REVIEW B, VOLUME 64, 134109 (2001)

⁹³Nb NMR of the random-field-dominated relaxor transition in pure and doped SBN R. Blinc, A. Gregorovič, B. Zalar, R. Pirc, and J. Seliger W. Kleemann S. G. Lushnikov R. Pankrath

VOLUME 86, NUMBER 26 PHYSICAL REVIEW LETTERS 25 JUNE 2001

Dynamic Light Scattering at Domains and Nanoclusters in a Relaxor Ferroelectric

W. Kleemann,¹ P. Licinio,² Th. Woike,³ and R. Pankrath⁴

Eur. Phys. J. B 14, 633-637 (2000)

Phase transitions in $Sr_{0.61}Ba_{0.39}Nb_2O_6{:}Ce^{3+}{:}$ II. Linear birefringence studies of spontaneous and precursor polarization

P. Lehnen¹, W. Kleemann^{1, a}, Th. Woike², and R. Pankrath³

PHYSICAL REVIEW B, VOLUME 64, 134109 (2001)

⁹³Nb NMR of the random-field-dominated relaxor transition in pure and doped SBN R. Blinc, A. Gregorovič, B. Zalar, R. Pirc, and J. Seliger W. Kleemann S. G. Lushnikov R. Pankrath

VOLUME 86, NUMBER 26 PHYSICAL REVIEW LETTERS 25 JUNE 2001

Dynamic Light Scattering at Domains and Nanoclusters in a Relaxor Ferroelectric

W. Kleemann,¹ P. Licinio,² Th. Woike,³ and R. Pankrath⁴

PHYSICAL REVIEW B, VOLUME 64, 224109 (2001)

Ferroelectric nanodomains in the uniaxial relaxor system $Sr_{0.61-x}Ba_{0.39}Nb_2O_6:Ce_x^{3+}$

P. Lehnen and W. Kleemann Th. Woike R. Pankrath

VOLUME 86, NUMBER 26 PHYSICAL REVIEW LETTERS 25 JUNE 2001

Dynamic Light Scattering at Domains and Nanoclusters in a Relaxor Ferroelectric

W. Kleemann,¹ P. Licinio,² Th. Woike,³ and R. Pankrath⁴

PHYSICAL REVIEW B, VOLUME 64, 224109 (2001)

 Ferroelectric nanodomains in the uniaxial relaxor system $Sr_{0.61-x}Ba_{0.39}Nb_2O_6:Ce_x^{3+}$

 P. Lehnen and W. Kleemann
 Th. Woike
 R. Pankrath

PHYSICAL REVIEW B, VOLUME 64, 224109 (2001)

 Ferroelectric nanodomains in the uniaxial relaxor system $Sr_{0.61-x}Ba_{0.39}Nb_2O_6:Ce_x^{3+}$

 P. Lehnen and W. Kleemann
 Th. Woike
 R. Pankrath

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results 0000000	Conclusions

Order parameter
$$P(T) = P_0 \left(1 - \frac{T}{T_c}\right)^{\beta}$$
 for $T \leq T_c$

Order parameter
$$P(T) = P_0 \left(1 - rac{T}{T_{
m C}}
ight)^{oldsymbol{eta}}$$
 for $T \lessapprox T_{
m C}$

1.2

Order parameter
$$P(T) = P_0 \left(1 - \frac{T}{T_c}\right)^{\beta}$$
 for $T \leq T_c$

E SQC

Order parameter
$$P(T) = P_0 \left(1 - \frac{T}{T_C}\right)^{oldsymbol{eta}}$$
 for $T \lessapprox T_C$

Absence of true critical exponents in relaxor ferroelectrics: the case for defect dynamics

Order parameter
$$P(T) = P_0 \left(1 - \frac{T}{T_c}\right)^{\beta}$$
 for $T \lesssim T_c$

Absence of true critical exponents in relaxor ferroelectrics: the case for defect dynamics

J F Scott

J. Phys.: Condens. Matter 18 (2006) 7123-7134

Absence of true critical exponents in relaxor ferroelectrics: the case for nanodomain freezing

0 Wolfgang Kleemann J. Phys.: Condens. Matter 18 (2006) L523-L526 320 330 340 350 360 370 380 Temperature [K]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Introduction ○○○○●	Strontium Barium Niobate	k-Space Spectroscopy	Results 0000000	Conclusions

Outline

Strontium Barium Niobate

Crystal Structure, Phase Diagram, Transition Temperature

k-Space Spectroscopy

Second-Harmonic Generation Random Quasi Phase Matching Real Space and k-Space

Results

Poled and Unpoled States Temperature Dependence of k-Spectra Preparation Dependence of the Phase Transition

ヨト イヨト ヨヨ わえつ

Strontium Barium Niobate – SBN – Sr_xBa_{1-x}Nb₂O₆

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃目目 のへ(~)

Results

Conclusions

$SBN - Sr_xBa_{1-x}Nb_2O_6 - Structure$

Sergey Podlozhenov, Heribert A. Graetsch, Julius Schneider, Michael Ulex, Manfred Wöhlecke and Klaus Betzler: *Crystal structure of strontium barium niobate* $Sr_xBa_{1-x}Nb_2O_6$ (*SBN*) *in the composition range* 0.32 < x < 0.82. Acta Cryst. B 62:960–965 (2006).

Results

Conclusions

$SBN - Sr_xBa_{1-x}Nb_2O_6 - Structure$

D. Viehland, Z. Xu, W.-H. Huang: *Structure-property relationships in strontium barium niobate. 1. needle-like nanopolar domains and the metastably-locked incommensurate structure.* Phil. Mag. A 71:205 (1995)

$SBN - Sr_xBa_{1-x}Nb_2O_6 - Phase Diagramm$

Michael Ulex, Rainer Pankrath, Klaus Betzler: *Growth of strontium barium niobate: the liquidus-solidus phase diagram.* J. Crystal Growth 271:128–133 (2004).

A D b A A b

★ ∃ ► ★ ∃ ► ∃ =

SBN – Sr_xBa_{1-x}Nb₂O₆ – Transition Temperature

C. David, T. Granzow, A. Tunyagi, M. Wöhlecke, Th. Woike, K. Betzler, M. Ulex, M. Imlau, R. Pankrath: *Composition dependence of the phase transition temperature in Strontium Barium Niobate*. phys. stat. sol. (a) 201:R49 (2004).

ヨト イヨト ヨヨ のくや

Conclusions

SBN – Sr_xBa_{1-x}Nb₂O₆ – Transition Temperature

Ä. Andresen, A.-N. Bahar, D. Conradi, I.-I. Oprea, R. Pankrath, U. Voelker, K. Betzler, M. Wöhlecke, U. Caldiño, E. Martín, D. Jaque, J. García Solé: *Spectroscopy of Eu³⁺ ions in congruent strontium barium niobate crystals.* Phys. Rev. B 77:214102 (2008).

k-Space Spectroscopy ●○○○○○○ Results

Conclusions

k-Space Spectroscopy

k-Space Spectroscopy – the Trigger

S. Kawai, T. Ogawa, H. S. Lee, Robert C. DeMattei, and Robert S. Feigelson:

Second-harmonic generation from needlelike ferroelectric domains in $Sr_{0.6}Ba_{0.4}Nb_2O_6$ single crystals.

Appl. Phys. Letters 73:768 (1998).

A D b A A b

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions
		000000		

$$\begin{pmatrix} E_1^{2\omega} \\ E_2^{2\omega} \\ E_3^{2\omega} \end{pmatrix} \propto \begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} E_1^{\omega} E_1^{\omega} \\ E_2^{\omega} E_2^{\omega} \\ E_3^{\omega} E_3^{\omega} \\ 2E_2^{\omega} E_3^{\omega} \\ 2E_3^{\omega} E_1^{\omega} \\ 2E_1^{\omega} E_2^{\omega} \end{pmatrix}$$

$$d_{ik} = f(P)$$

< 口 > < 同

ELE SQC

∃ ⊳

$$\begin{pmatrix} E_1^{2\omega} \\ E_2^{2\omega} \\ E_3^{2\omega} \end{pmatrix} \propto \begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} E_1^{\omega} E_1^{\omega} \\ E_2^{\omega} E_2^{\omega} \\ E_3^{\omega} E_3^{\omega} \\ 2E_2^{\omega} E_3^{\omega} \\ 2E_3^{\omega} E_1^{\omega} \\ 2E_1^{\omega} E_2^{\omega} \end{pmatrix}$$

$$d_{ik} = f(P) \stackrel{\text{try}}{=} a_0 + a_1 P + a_2 P^2 + a_3 P^3 + \dots$$

$$\begin{pmatrix} E_1^{2\omega} \\ E_2^{2\omega} \\ E_3^{2\omega} \end{pmatrix} \propto \begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} E_1^{\omega} E_1^{\omega} \\ E_2^{\omega} E_2^{\omega} \\ E_3^{\omega} E_3^{\omega} \\ 2E_2^{\omega} E_3^{\omega} \\ 2E_3^{\omega} E_1^{\omega} \\ 2E_1^{\omega} E_2^{\omega} \end{pmatrix}$$

$$d_{ik} = f(P) \stackrel{\text{try}}{=} a_0 + a_1 P + a_2 P^2 + a_3 P^3 + \dots, \quad a_0, a_2, \dots = 0$$

$$\begin{pmatrix} E_1^{2\omega} \\ E_2^{2\omega} \\ E_3^{2\omega} \end{pmatrix} \propto \begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} E_1^{\omega} E_1^{\omega} \\ E_2^{\omega} E_2^{\omega} \\ E_3^{\omega} E_3^{\omega} \\ 2E_2^{\omega} E_3^{\omega} \\ 2E_3^{\omega} E_1^{\omega} \\ 2E_1^{\omega} E_2^{\omega} \end{pmatrix}$$

$$\mathbf{d}_{ik} = \mathbf{f}(\mathbf{P}) \stackrel{\text{try}}{=} \mathbf{a}_0 + \mathbf{a}_1 \mathbf{P} + \mathbf{a}_2 \mathbf{P}^2 + \mathbf{a}_3 \mathbf{P}^3 + \dots, \quad \mathbf{a}_0, \mathbf{a}_2, \dots = 0$$

$$d_{ik} = f(P) \stackrel{\text{try}}{=} a_0 + a_1 P + a_2 P^2 + a_3 P^3 + \dots, \quad a_0, a_2, \dots = 0$$

 $E^{2\omega}(T) \implies P(T)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Introduction	Strontium Barium Niobate	k-Space Spectroscopy
00000	0	000000

Results

Conclusions

Geometrical Implications

< □ > < 同

医下子 医下

ELE SQC

Results

Conclusions

Geometrical Implications

Results

Conclusions

Geometrical Implications

Arthur R. Tunyagi, Michael Ulex, and Klaus Betzler: *Noncollinear optical frequency doubling in strontium barium niobate*, Physical Review Letters 90:243901 (2003).

★ ■ ▶ ★ ■ ▶ ■ ■ ■ • • • • • •

Results

Conclusions

Noncollinear Random Quasi Phase Matching

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Cone
		0000000		

Real Space – Small Domains

lusions

Real Space – Small Domains \implies k-Space

= 900

3 1 3

Introduction	Strontium Barium Niobate	k-Space Spectroscopy ○○○○○●○	Results	Conclusions

Real Space – Large Domains \implies k-Space

Intr	odu	cti	on	
00	000	С		

k-Space Spectroscopy ○○○○○● Results

Conclusions

Accessible k-Spectrum

< □ > < 同 >

★ ■ ▶ ★ ■ ▶ ■ ■ ■ • • • • • •

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions
00000		000000	0000000	0000000

Accessible k-Spectrum

$$|\mathbf{k_g}| = (4|\mathbf{k_1}|^2 + |\mathbf{k_2}|^2 - 4|\mathbf{k_1}||\mathbf{k_2}|\cos\varphi)^{\frac{1}{2}}$$

= 900

프 사 프

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions
		000000		

Accessible k-Spectrum

$$|\mathbf{k_g}| = \left(4|\mathbf{k_1}|^2 + |\mathbf{k_2}|^2 - 4|\mathbf{k_1}||\mathbf{k_2}|\cos\varphi\right)^{\frac{1}{2}}$$

= 900

< 글 ▶ 글

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results ●○○○○○○	Conclusions

Results

Poled and Unpoled States at Room Temperature

Uwe Voelker and Klaus Betzler: *Domain morphology from k-space spectroscopy of ferroelectric crystals.* Phys. Rev. B 74:132104 (2006).

-

Results ○●○○○○○ Conclusions

Temperature Dependence: Unpoled Sample

Heating an unpoled SBN sample

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions
			000000	

Temperature Dependence: Unpoled Sample

Heating an unpoled SBN sample

-

Results ○○●○○○○ Conclusions

Temperature Dependence: Poled Sample

Heating a poled SBN sample

포는

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions
			0000000	

Temperature Dependence: Unpoled Sample

Heating an unpoled SBN sample

-

Results

Conclusions

Temperature Dependence: Poled Sample

Heating a poled SBN sample (higher poling field)

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions
			0000000	

Temperature Dependence: Unpoled Sample

Heating an unpoled SBN sample

-

Results

Conclusions

Temperature Dependence: Unpoled Sample

Cooling an unpoled SBN sample

Results

Conclusions

k-Space Fingerprints

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions
			0000000	

Preparation Dependence of the Phase Transition

T. Granzow, Th.Woike, M.Wöhlecke, M. Imlau, W. Kleemann: *Change from 3D-Ising to Random Field-Ising-Model Criticality in a Uniaxial Relaxor Ferroelectric.* Phys. Rev. Letters 92:065701 (2004).

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions
			0000000	

Preparation Dependence of the Phase Transition

T. Granzow, Th.Woike, M.Wöhlecke, M. Imlau, W. Kleemann: *Change from 3D-Ising to Random Field-Ising-Model Criticality in a Uniaxial Relaxor Ferroelectric*. Phys. Rev. Letters 92:065701 (2004).

Preparation Dependence of the Phase Transition

T. Granzow, Th.Woike, M.Wöhlecke, M. Imlau, W. Kleemann: *Change from 3D-Ising to Random Field-Ising-Model Criticality in a Uniaxial Relaxor Ferroelectric.* Phys. Rev. Letters 92:065701 (2004).

Uwe Voelker, Urs Heine, Christoph Gödecker, Klaus Betzler: *Domain size effects in a uniaxial ferroelectric relaxor system: The case of* $Sr_xBa_{1-x}Nb_2O_6$. J. Appl. Phys. 102:114112 (2007).

イロト イポト イヨト イヨト

- E = 9900

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results 0000000	Conclusions ●○○○○○○○

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results 0000000	Conclusions ●○○○○○○○

Results depend on ...

A D > <
A P >
A

ELE DOG

医下子 医下

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions ●○○○○○○○

►

Results depend on ...

... sample preparation

< □ > < 同

3 N

▲ 王 ▶ 王 王 ♪ � �

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results 0000000	Conclusions ●○○○○○○○

- Results depend on ...
 - ... sample preparation
- ... sample history

ELE SQC

►

- Results depend on ...
 - ... sample preparation
 - ... sample history
 - ... type of measurement

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

- Results depend on ...
 - ... sample preparation
 - ... sample history
 - ... type of measurement
 - ... velocity of measurement

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

- Results depend on ...
 - ... sample preparation ... sample history
 - ... type of measurement
 - ... velocity of measurement
 - ... polarization direction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

- Results depend on ...
 - ... sample preparation
 - ... sample history
 - ... type of measurement
 - ... velocity of measurement
 - ... polarization direction
 - ... individual crystal?

▲□▶▲□▶▲□▶▲□▶ ▲□▲ のの⊙

Results

Conclusions

Special Case of SBN?

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Similar Results for Other Relaxors

Calcium barium niobate (CBN) - heating characteristics of a poled sample

-

No unique phase transition of poled crystals

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

- No unique phase transition of poled crystals
- No thermodynamic equilibrium

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

- No unique phase transition of poled crystals
- No thermodynamic equilibrium
- ► No unique polarization in unpoled or partially-poled crystals

- No unique phase transition of poled crystals
- No thermodynamic equilibrium
- No unique polarization in unpoled or partially-poled crystals
- Any scaling attempts must fail

- No unique phase transition of poled crystals
- No thermodynamic equilibrium
- No unique polarization in unpoled or partially-poled crystals
- Any scaling attempts must fail
- Implications for critical exponents

- No unique phase transition of poled crystals
- No thermodynamic equilibrium
- No unique polarization in unpoled or partially-poled crystals
- Any scaling attempts must fail
- Implications for critical exponents
- Polarization directions locally not equivalent

- No unique phase transition of poled crystals
- No thermodynamic equilibrium
- No unique polarization in unpoled or partially-poled crystals
- Any scaling attempts must fail
- Implications for critical exponents
- Polarization directions locally not equivalent
- Global polarization no suitable order parameter?

- No unique phase transition of poled crystals
- No thermodynamic equilibrium
- No unique polarization in unpoled or partially-poled crystals
- Any scaling attempts must fail
- Implications for critical exponents
- Polarization directions locally not equivalent
- Global polarization no suitable order parameter ?
- Free energy depending not only on unique P?

Results

Conclusions

Loosely Coupled Regions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Results

Conclusions

Loosely Coupled Regions?

Varying composition, different structural stability

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���
Results

Conclusions

Loosely Coupled Regions?

Unique polarization - rather unlikely

Results

Conclusions

Loosely Coupled Regions?

Different local polarization

Results

Conclusions

Loosely Coupled Regions?

Near the phase transition

Results

Conclusions

Loosely Coupled Regions?

Polarization might be even locally reversed

no unique $\mathbf{P}(T)$ throughout the crystal

no unique $\mathbf{P}(T)$ throughout the crystal

instead local $\mathbf{P}_n(T) \Rightarrow \mathbf{P}(T) = \int \mathbf{P}_n(T) dV$

no unique $\mathbf{P}(T)$ throughout the crystal

instead local $\mathbf{P}_n(T) \Rightarrow \mathbf{P}(T) = \int \mathbf{P}_n(T) dV$

Additional terms in Hamiltonian due to

- Composition Variation
- Nonuniform Stress
- Nonequivalent Polarization Directions

▶ ...

Results

Conclusions

Locally Different Transition Temperatures

Locally Different Transition Temperatures

Polarization described by a unique critical exponent β

Locally Different Transition Temperatures

Global polarization as integral over the crystal

∃▶ 三日 のへへ

Locally Different Transition Temperatures

Critical exponent β pretended by an *excellent* fit

■▶ 三日 のへの

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results 0000000	Conclusions 000000●0

Thanks

してい 二郎・小郎・小郎・ 小臣・

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results	Conclusions 000000●0
Thanks				

to the crystal growers — Rainer Pankrath, Sergey Podlozhenov, Michael Ulex (SBN) Manfred Mühlberg, Manfred Burianek (CBN)

-

< 3 b

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results
Thanks	_		

to the crystal growers — Rainer Pankrath, Sergey Podlozhenov, Michael Ulex (SBN) Manfred Mühlberg, Manfred Burianek (CBN)

for financial support

Deutsche Forschungsgemeinschaft DFG

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Conclusions

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Re

sults

Thanks ...

to the crystal growers — Rainer Pankrath, Sergey Podlozhenov, Michael Ulex (SBN) Manfred Mühlberg, Manfred Burianek (CBN)

for financial support

for the invitation

Introduction	Strontium Barium Niobate	k-Space Spectroscopy	Results
00000	O	0000000	0000000

Thanks ...

to the crystal growers — Rainer Pankrath, Sergey Podlozhenov, Michael Ulex (SBN) Manfred Mühlberg, Manfred Burianek (CBN)

for financial support

for the invitation

Deutsche Forschungsgemeinschaft DFG

・ロト・御 ト・ヨト・ヨト・ヨー シタの

Thank you for your attention

Conclusions

Additional Material

- Setup for k-Space Spectroscopy
- Calculated k-Space Representation of Real Domains
- Domain Lengths Model Calculations
- Domain Lengths Measurements
- k-Space Spectrum and Electric Field
- Conical Light Scattering at Higher Temperatures
- Beam Shape and its Fourier Transform

▲□▶▲冊▶▲≡▶▲≡▶ ≡|= ∽)へ(~)

Setup for k-Space Spectroscopy

Calculated k-Space Representation of Real Domains

Real-space distribution taken from: P. Lehnen, W. Kleemann, Th. Woike, R. Pankrath: *Ferroelectric nanodomains in the uniaxial relaxor system* $Sr_{0.61-x}Ba_{0.39}Nb_2O_6:Ce_x^{3+}$. Physical Review B 64:224109 (2001).

Calculated k-Space Representation of Real Domains

Real-space distribution taken from: P. Lehnen, W. Kleemann, Th. Woike, R. Pankrath: *Ferroelectric nanodomains in the uniaxial relaxor system* $Sr_{0.61-x}Ba_{0.39}Nb_2O_6:Ce_x^{3+}$. Physical Review B 64:224109 (2001).

Domain Lengths – Model Calculations

Domain Lengths – Model Calculations

Domain Lengths – Measurement

Poled sample – heating

ELE DQC

Domain Lengths – Measurement

Poled sample – heating (left) and cooling (right)

= 900

3 1 3

k-Space Spectrum and Electric Field

Application of an electric field to previously unpoled SBN

Conical Light Scattering at Higher Temperatures

K. Bastwöste, U. Sander, M. Imlau: *Conical light scattering in strontium barium niobate crystals* related to an intrinsic composition inhomogeneity. J. Phys.: Condens. Matter 19:156225 (2007).

▲□▶▲冊▶▲≡▶▲≡▶ ≡|= ∽)へ(~)

Beam Shape and its Fourier Transform

< 口 > < 同

글 🕨 🖌 글 🕨

ELE SQC

Beam Shape and its Fourier Transform

< □ > < 同 >

글 🕨 🖌 글 🕨

ELE SQC