Noncollinear Frequency Conversion

Klaus Betzler

Fachbereich Physik

Ring Lecture PhD Program — Summer 2004

(人間) (人) (人) (人) (人) (人) (人)

Outline

Part I: Introduction – Nonlinear Optics

Part II: Harmonic Generation

Part III: Noncollinear Harmonic Generation

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Our basic experience in physics and life:
 We are living in a linear world
- Mechanics: Doubled Force ⇒ Doubled Impact
- Electricity: Doubled Voltage ⇒ Doubled Current
- Measurements rely on linearity: Length, Weight, Intensity,
- Prices usually add up linearly:

Two apples are twice the price of one.

- Our basic experience in physics and life: We are living in a linear world!
 Mechanics: Doubled Force ⇒ Doubled Impact
 Electricity: Doubled Voltage ⇒ Doubled Current
 Measurements rely on linearity: Length, Weight, Intensity,
- Prices usually add up linearly: Two apples are twice the price of o

- Our basic experience in physics and life:
 We are living in a linear world !
- Mechanics: Doubled Force \Rightarrow Doubled Impact
- Electricity: Doubled Voltage ⇒ Doubled Current
- Measurements rely on linearity:

Length, Weight, Intensity, ...

• Prices usually add up linearly:

Two apples are twice the price of one.

э

- Our basic experience in physics and life:
 We are living in a linear world !
- Mechanics: Doubled Force ⇒ Doubled Impact
- Electricity: Doubled Voltage ⇒ Doubled Current
- Measurements rely on linearity: Length, Weight, Intensity,
- Prices usually add up linearly:

Two apples are twice the price of one.

• Our basic experience in physics and life:

We are living in a linear world!

- Mechanics: Doubled Force ⇒ Doubled Impact
- Electricity: Doubled Voltage ⇒ Doubled Current
- Measurements rely on linearity:
 Length Weight Intensity
- Prices usually add up linearly:

Two apples are twice the price of one.

• Our basic experience in physics and life:

We are living in a linear world!

- Mechanics: Doubled Force ⇒ Doubled Impact
- Electricity: Doubled Voltage ⇒ Doubled Current
- Measurements rely on linearity: Length, Weight, Intensity, ...
- Prices usually add up linearly:

Two apples are twice the price of one.

<ロ> (四) (四) (三) (三) (三)

• Our basic experience in physics and life:

We are living in a linear world!

- Mechanics: Doubled Force ⇒ Doubled Impact
- Electricity: Doubled Voltage ⇒ Doubled Current
- Measurements rely on linearity: Length, Weight, Intensity, ...
- Prices usually add up linearly:

Two apples are twice the price of one.

However ...

"Physics would be dull and life most unfulfilling if all physical phenomena around us were linear. Fortunately, we are living in a **nonlinear** world. While linearization beautifies physics, nonlinearity provides excitement in physics."

Y. R. Shen in The Principles of Nonlinear Optics

However ...

"Physics would be dull and life most unfulfilling if all physical phenomena around us were linear.

Fortunately, we are living in a **nonlinear** world. While linearization beautifies physics, nonlinearity provides excitement in physics."

Y. R. Shen in The Principles of Nonlinear Optics

However ...

"Physics would be dull and life most unfulfilling if all physical phenomena around us were linear. Fortunately, we are living in a **nonlinear** world. While linearization beautifies physics, nonlinearity provides excitement in physics."

Y. R. Shen in The Principles of Nonlinear Optics

<ロ> (四) (四) (三) (三) (三)

However

"Physics would be dull and life most unfulfilling if all physical phenomena around us were linear. Fortunately, we are living in a **nonlinear** world. While linearization beautifies physics, nonlinearity provides excitement in physics."

Y. R. Shen in The Principles of Nonlinear Optics

However

"Physics would be dull and life most unfulfilling if all physical phenomena around us were linear. Fortunately, we are living in a **nonlinear** world. While linearization beautifies physics, nonlinearity provides excitement in physics."

Y. R. Shen in The Principles of Nonlinear Optics

Nonlinear Response

- What about 100 apples?
- You get discount.
- That's sort of nonlinear response by the salesman.
- And in physics?
- Hooke's law is only valid in a limited range.
- Audio signals get distorted at high intensities.
- Linearity always is only an (excellent) approximation.

・ロン ・四 ・ ・ ヨン ・ モン

Nonlinear Response

- What about 100 apples?
- You get discount.
- That's sort of nonlinear response by the salesman.
- And in physics?
- Hooke's law is only valid in a limited range.
- Audio signals get distorted at high intensities.
- Linearity always is only an (excellent) approximation.

- What about 100 apples?
- You get discount.
- That's sort of **nonlinear response** by the salesman.
- And in physics ?
- Hooke's law is only valid in a limited range.
- Audio signals get distorted at high intensities.
- Linearity always is only an (excellent) approximation.

- What about 100 apples?
- You get discount.
- That's sort of nonlinear response by the salesman.
- And in physics?
- Hooke's law is only valid in a limited range.
- Audio signals get distorted at high intensities.
- Linearity always is only an (excellent) approximation.

э

- What about 100 apples?
- You get discount.
- That's sort of nonlinear response by the salesman.
- And in physics?
- Hooke's law is only valid in a limited range.
- Audio signals get distorted at high intensities.
- Linearity always is only an (excellent) approximation.

◆□ > → 御 > → 注 > → 注 > …

- What about 100 apples?
- You get discount.
- That's sort of nonlinear response by the salesman.
- And in physics?
- Hooke's law is only valid in a limited range.
- Audio signals get distorted at high intensities.
- Linearity always is only an (excellent) approximation.

- What about 100 apples?
- You get discount.
- That's sort of nonlinear response by the salesman.
- And in physics?
- Hooke's law is only valid in a limited range.
- Audio signals get distorted at high intensities.
- Linearity always is only an (excellent) approximation.

◆□ > → 御 > → 注 > → 注 > …

- What about 100 apples?
- You get discount.
- That's sort of nonlinear response by the salesman.
- And in physics?
- Hooke's law is only valid in a limited range.
- Audio signals get distorted at high intensities.
- Linearity always is only an (excellent) approximation.

◆□ > → 御 > → 注 > → 注 > …

Linear and Nonlinear Response of Matter

What happens to LIGHT in MATTER ?

э

Linear and Nonlinear Response of Matter

What happens to LIGHT in MATTER ?

э.

Linear and Nonlinear Response of Matter

Linear Response

Linear and Nonlinear Response of Matter

Linear Response

Klaus Betzler Noncollinear Frequency Conversion

Linear and Nonlinear Response of Matter

Linear Response

No Interaction of Light Beams

э

Linear and Nonlinear Response of Matter

Linear Response

No Interaction of Light Beams

<ロ> (日) (日) (日) (日) (日)

э

Nonlinear Response

Linear and Nonlinear Response of Matter

Linear and Nonlinear Response of Matter

Linear Polarization — we start with the simple case

Electric Field \Longrightarrow Polarization

 $\mathsf{P}(\mathsf{r},t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathsf{r}-\mathsf{r}',t-t') \cdot \mathsf{E}(\mathsf{r}',t') d\mathsf{r}' dt'$

Linear susceptibility $\chi^{(1)}$ usually strictly local ($\delta(\mathbf{r} - \mathbf{r'})$).

Plane waves $E(\mathbf{k}, \omega) = E(\mathbf{k}, \omega) \exp(i\mathbf{k}\mathbf{r} - i\omega t)$,

Fourier transform $P(k, \omega) = \epsilon_0 \chi^{(1)}(k, \omega) E(k, \omega)$

with $-\chi^{(1)}({f k},\omega)=\int_{-\infty}^\infty \chi^{(1)}({f r},t)\exp(-i{f k}{f r}+i\omega t)d{f r}dt$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Linear Polarization — we start with the simple case

Electric Field \Longrightarrow Polarization

 $\mathsf{P}(\mathsf{r},t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathsf{r}-\mathsf{r}',t-t') \cdot \mathsf{E}(\mathsf{r}',t') d\mathsf{r}' dt'$

Linear susceptibility $\chi^{(1)}$ usually strictly local ($\delta(\mathbf{r} - \mathbf{r'})$).

Plane waves $\mathbf{E}(\mathbf{k},\omega) = \mathbf{E}(\mathbf{k},\omega) \exp(i\mathbf{k}\mathbf{r} - i\omega t)$,

Fourier transform $\mathsf{P}(\mathsf{k},\omega)=\epsilon_0\chi^{(1)}(\mathsf{k},\omega)\mathsf{E}(\mathsf{k},\omega)$

with $-\chi^{(1)}({f k},\omega)=\int_{-\infty}^\infty \chi^{(1)}({f r},t)\exp(-i{f k}{f r}+i\omega t)d{f r}dt$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Linear Polarization Nonlinear Polarization Crystal Symmetry

Linear Polarization — we start with the simple case

Electric Field \Longrightarrow Polarization

 $\mathsf{P}(\mathsf{r},t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathsf{r}-\mathsf{r}',t-t') \cdot \mathsf{E}(\mathsf{r}',t') d\mathsf{r}' dt'$

Linear susceptibility $\chi^{(1)}$ usually strictly local ($\delta(\mathbf{r} - \mathbf{r'})$).

Plane waves $\mathbf{E}(\mathbf{k}, \omega) = \mathbf{E}(\mathbf{k}, \omega) \exp(i\mathbf{k}\mathbf{r} - i\omega t)$,

Fourier transform $P(\mathbf{k},\omega) = \epsilon_0 \chi^{(1)}(\mathbf{k},\omega) E(\mathbf{k},\omega)$

with $-\chi^{(1)}({f k},\omega)=\int_{-\infty}^\infty \chi^{(1)}({f r},t)\exp(-i{f k}{f r}+i\omega t)d{f r}dt$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Linear Polarization Nonlinear Polarization Crystal Symmetry

Linear Polarization — we start with the simple case

Electric Field \Longrightarrow Polarization

 $\mathsf{P}(\mathsf{r},t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathsf{r}-\mathsf{r}',t-t') \cdot \mathsf{E}(\mathsf{r}',t') d\mathsf{r}' dt'$

Linear susceptibility $\chi^{(1)}$ usually strictly local ($\delta(\mathbf{r} - \mathbf{r'})$).

Plane waves $\mathbf{E}(\mathbf{k},\omega) = \mathbf{E}(\mathbf{k},\omega) \exp(i\mathbf{k}\mathbf{r} - i\omega t)$,

Fourier transform $P(\mathbf{k},\omega) = \epsilon_0 \chi^{(1)}(\mathbf{k},\omega) E(\mathbf{k},\omega)$

with $\chi^{(1)}(\mathbf{k},\omega)=\int_{-\infty}^{\infty}\chi^{(1)}(\mathbf{r},t)\exp(-i\mathbf{k}\mathbf{r}+i\omega t)d\mathbf{r}dt$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Linear Polarization Nonlinear Polarization Crystal Symmetry

Linear Polarization — we start with the simple case

Electric Field \Longrightarrow Polarization

 $\mathsf{P}(\mathsf{r},t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathsf{r}-\mathsf{r}',t-t') \cdot \mathsf{E}(\mathsf{r}',t') d\mathsf{r}' dt'$

Linear susceptibility $\chi^{(1)}$ usually strictly local ($\delta(\mathbf{r} - \mathbf{r'})$).

Plane waves $\mathbf{E}(\mathbf{k},\omega) = \mathbf{E}(\mathbf{k},\omega) \exp(i\mathbf{k}\mathbf{r} - i\omega t)$,

Fourier transform $P(\mathbf{k},\omega) = \epsilon_0 \chi^{(1)}(\mathbf{k},\omega) E(\mathbf{k},\omega)$

with $\chi^{(1)}(\mathbf{k},\omega)=\int_{-\infty}^{\infty}\chi^{(1)}(\mathbf{r},t)\exp(-i\mathbf{k}\mathbf{r}+i\omega t)d\mathbf{r}dt$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで
Linear Polarization Nonlinear Polarization Crystal Symmetry

Linear Polarization — we start with the simple case

Electric Field \Longrightarrow Polarization

 $\mathsf{P}(\mathsf{r},t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathsf{r}-\mathsf{r}',t-t') \cdot \mathsf{E}(\mathsf{r}',t') d\mathsf{r}' dt'$

Linear susceptibility $\chi^{(1)}$ usually strictly local ($\delta(\mathbf{r} - \mathbf{r'})$).

Plane waves $\mathbf{E}(\mathbf{k}, \omega) = \mathbf{E}(\mathbf{k}, \omega) \exp(i\mathbf{k}\mathbf{r} - i\omega t)$,

Fourier transform $P(\mathbf{k},\omega) = \epsilon_0 \chi^{(1)}(\mathbf{k},\omega) E(\mathbf{k},\omega)$

with $\chi^{(1)}(\mathbf{k},\omega) = \int_{-\infty}^{\infty} \chi^{(1)}(\mathbf{r},t) \exp(-i\mathbf{k}\mathbf{r}+i\omega t) d\mathbf{r} dt$.

イロト イロト イヨト イヨト ヨー うらぐ

Linear Polarization — we start with the simple case

Electric Field \Longrightarrow Polarization

$$\mathsf{P}(\mathsf{r},t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathsf{r}-\mathsf{r}',t-t') \cdot \mathsf{E}(\mathsf{r}',t') d\mathsf{r}' dt'$$

Linear susceptibility $\chi^{(1)}$ usually strictly local ($\delta(\mathbf{r} - \mathbf{r'})$).

Plane waves
$$\mathbf{E}(\mathbf{k},\omega) = \mathbf{E}(\mathbf{k},\omega) \exp(i\mathbf{k}\mathbf{r} - i\omega t)$$
,

Fourier transform $P(\mathbf{k},\omega) = \epsilon_0 \chi^{(1)}(\mathbf{k},\omega) E(\mathbf{k},\omega)$

with
$$\chi^{(1)}(\mathbf{k},\omega) = \int_{-\infty}^{\infty} \chi^{(1)}(\mathbf{r},t) \exp(-i\mathbf{k}\mathbf{r} + i\omega t) d\mathbf{r} dt$$
.

-

P to be expanded into a power series of E

$$P(\mathbf{r}, t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathbf{r} - \mathbf{r}', t - t') \cdot \mathbf{E}(\mathbf{r}', t') d\mathbf{r}' dt' + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(2)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2) * \mathbf{E}(\mathbf{r}_1, t_1) \mathbf{E}(\mathbf{r}_2, t_2) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(3)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2; \mathbf{r} - \mathbf{r}_3, t - t_1) * \mathbf{E}(\mathbf{r}_1, t_1) \mathbf{E}(\mathbf{r}_2, t_2) \mathbf{E}(\mathbf{r}_3, t_3) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 d\mathbf{r}_3 d\mathbf{r}_3 d\mathbf{r}_4 d\mathbf{r}_5 d\mathbf{r}$$

P to be expanded into a power series of E

$$P(\mathbf{r}, t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathbf{r} - \mathbf{r}', t - t') \cdot \mathbf{E}(\mathbf{r}', t') d\mathbf{r}' dt' + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(2)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2) * \mathbf{E}(\mathbf{r}_1, t_1) \mathbf{E}(\mathbf{r}_2, t_2) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(3)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2; \mathbf{r} - \mathbf{r}_3, t - t_3) * \mathbf{E}(\mathbf{r}_1, t_1) \mathbf{E}(\mathbf{r}_2, t_2) \mathbf{E}(\mathbf{r}_3, t_3) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 d\mathbf{r}_3 dt_3 + \dots$$

< ロ > (何 > (三 > (三 >))

э

P to be expanded into a power series of E

$$P(\mathbf{r}, t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathbf{r} - \mathbf{r}', t - t') \cdot E(\mathbf{r}', t') d\mathbf{r}' dt' + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(2)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2) * E(\mathbf{r}_1, t_1) E(\mathbf{r}_2, t_2) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(3)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2; \mathbf{r} - \mathbf{r}_3, t - t_3) * E(\mathbf{r}_1, t_1) E(\mathbf{r}_2, t_2) E(\mathbf{r}_3, t_3) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 d\mathbf{r}_3 dt_3 + \dots$$

P to be expanded into a power series of E

$$P(\mathbf{r}, t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathbf{r} - \mathbf{r}', t - t') \cdot E(\mathbf{r}', t') d\mathbf{r}' dt' + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(2)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2) * E(\mathbf{r}_1, t_1) E(\mathbf{r}_2, t_2) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(3)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2; \mathbf{r} - \mathbf{r}_3, t - t_3) * E(\mathbf{r}_1, t_1) E(\mathbf{r}_2, t_2) E(\mathbf{r}_3, t_3) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 d\mathbf{r}_3 dt + \cdots$$

-

P to be expanded into a power series of E

$$P(\mathbf{r}, t) = \epsilon_0 \int_{-\infty}^{\infty} \chi^{(1)}(\mathbf{r} - \mathbf{r}', t - t') \cdot E(\mathbf{r}', t') d\mathbf{r}' dt' + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(2)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2) * E(\mathbf{r}_1, t_1) E(\mathbf{r}_2, t_2) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 + \epsilon_0 \int_{-\infty}^{\infty} \chi^{(3)}(\mathbf{r} - \mathbf{r}_1, t - t_1; \mathbf{r} - \mathbf{r}_2, t - t_2; \mathbf{r} - \mathbf{r}_3, t - t_3) * E(\mathbf{r}_1, t_1) E(\mathbf{r}_2, t_2) E(\mathbf{r}_3, t_3) d\mathbf{r}_1 dt_1 d\mathbf{r}_2 dt_2 d\mathbf{r}_3 dt_3 + \dots$$

Electric field $\mathbf{E}(\mathbf{r}, t) = \sum_{i} \mathbf{E}(\mathbf{k}_{i}, \omega_{i})$,

Polarization $\mathbf{P}(\mathbf{k},\omega) = \mathbf{P}^{(1)}(\mathbf{k},\omega) + \mathbf{P}^{(2)}(\mathbf{k},\omega) + \mathbf{P}^{(3)}(\mathbf{k},\omega) \dots$

 $\mathsf{P}^{(1)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(1)}(\mathsf{k},\omega) \cdot \mathsf{E}(\mathsf{k},\omega) \; ,$

 $\mathsf{P}^{(2)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(2)}(\mathsf{k} = \mathsf{k}_i + \mathsf{k}_j, \omega = \omega_i + \omega_j) * \mathsf{E}(\mathsf{k}_i,\omega_i)\mathsf{E}(\mathsf{k}_j,\omega_j) ,$

 $\mathsf{P}^{(3)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(3)}(\mathsf{k} = \mathsf{k}_I + \mathsf{k}_j + \mathsf{k}_k, \omega = \omega_I + \omega_j + \omega_k)$

 $* \mathsf{E}(\mathsf{k}_{l},\omega_{l})\mathsf{E}(\mathsf{k}_{j},\omega_{j})\mathsf{E}(\mathsf{k}_{k},\omega_{k})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つのべ

Electric field
$$\mathbf{E}(\mathbf{r}, t) = \sum_{i} \mathbf{E}(\mathbf{k}_{i}, \omega_{i})$$
,

Polarization $\mathbf{P}(\mathbf{k},\omega) = \mathbf{P}^{(1)}(\mathbf{k},\omega) + \mathbf{P}^{(2)}(\mathbf{k},\omega) + \mathbf{P}^{(3)}(\mathbf{k},\omega) \dots$

$$\mathsf{P}^{(1)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(1)}(\mathsf{k},\omega) \cdot \mathsf{E}(\mathsf{k},\omega) ,$$

 $\mathsf{P}^{(2)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(2)}(\mathsf{k} = \mathsf{k}_i + \mathsf{k}_j, \omega = \omega_i + \omega_j) * \mathsf{E}(\mathsf{k}_i,\omega_i)\mathsf{E}(\mathsf{k}_j,\omega_j) \; ,$

 $\mathsf{P}^{(3)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(3)}(\mathsf{k} = \mathsf{k}_i + \mathsf{k}_j + \mathsf{k}_k, \omega = \omega_i + \omega_j + \omega_k)$

$$* \mathsf{E}(\mathsf{k}_i, \omega_i) \mathsf{E}(\mathsf{k}_j, \omega_j) \mathsf{E}(\mathsf{k}_k, \omega_k)$$
 .

Electric field
$$\mathbf{E}(\mathbf{r}, t) = \sum_{i} \mathbf{E}(\mathbf{k}_{i}, \omega_{i})$$
,

Polarization $\mathbf{P}(\mathbf{k},\omega) = \mathbf{P}^{(1)}(\mathbf{k},\omega) + \mathbf{P}^{(2)}(\mathbf{k},\omega) + \mathbf{P}^{(3)}(\mathbf{k},\omega) \dots$

$$\mathsf{P}^{(1)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(1)}(\mathsf{k},\omega) \cdot \mathsf{E}(\mathsf{k},\omega) ,$$

 $\mathsf{P}^{(2)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(2)}(\mathsf{k} = \mathsf{k}_i + \mathsf{k}_j, \omega = \omega_i + \omega_j) * \mathsf{E}(\mathsf{k}_i,\omega_i)\mathsf{E}(\mathsf{k}_j,\omega_j) ,$

 $\mathsf{P}^{(3)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(3)}(\mathsf{k} = \mathsf{k}_i + \mathsf{k}_j + \mathsf{k}_k, \omega = \omega_i + \omega_j + \omega_k)$

*
$$\mathsf{E}(\mathsf{k}_i,\omega_i)\mathsf{E}(\mathsf{k}_j,\omega_j)\mathsf{E}(\mathsf{k}_k,\omega_k)$$
 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Electric field
$$\mathbf{E}(\mathbf{r}, t) = \sum_{i} \mathbf{E}(\mathbf{k}_{i}, \omega_{i})$$
,

Polarization $\mathbf{P}(\mathbf{k},\omega) = \mathbf{P}^{(1)}(\mathbf{k},\omega) + \mathbf{P}^{(2)}(\mathbf{k},\omega) + \mathbf{P}^{(3)}(\mathbf{k},\omega) \dots$

$$\mathsf{P}^{(1)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(1)}(\mathsf{k},\omega) \cdot \mathsf{E}(\mathsf{k},\omega) ,$$

 $\mathsf{P}^{(2)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(2)}(\mathsf{k} = \mathsf{k}_i + \mathsf{k}_j, \omega = \omega_i + \omega_j) * \mathsf{E}(\mathsf{k}_i,\omega_i)\mathsf{E}(\mathsf{k}_j,\omega_j) ,$

 $\mathsf{P}^{(3)}(\mathsf{k},\omega) = \epsilon_0 \chi^{(3)}(\mathsf{k} = \mathsf{k}_i + \mathsf{k}_j + \mathsf{k}_k, \omega = \omega_i + \omega_j + \omega_k)$

$$* \mathsf{E}(\mathsf{k}_i, \omega_i) \mathsf{E}(\mathsf{k}_j, \omega_j) \mathsf{E}(\mathsf{k}_k, \omega_k)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Electric field
$$\mathbf{E}(\mathbf{r}, t) = \sum_{i} \mathbf{E}(\mathbf{k}_{i}, \omega_{i})$$
,

Polarization $\mathbf{P}(\mathbf{k},\omega) = \mathbf{P}^{(1)}(\mathbf{k},\omega) + \mathbf{P}^{(2)}(\mathbf{k},\omega) + \mathbf{P}^{(3)}(\mathbf{k},\omega) \dots$

$$\begin{aligned} \mathsf{P}^{(1)}(\mathsf{k},\omega) &= \epsilon_0 \chi^{(1)}(\mathsf{k},\omega) \cdot \mathsf{E}(\mathsf{k},\omega) ,\\ \mathsf{P}^{(2)}(\mathsf{k},\omega) &= \epsilon_0 \chi^{(2)}(\mathsf{k}=\mathsf{k}_i+\mathsf{k}_j,\omega=\omega_i+\omega_j) * \mathsf{E}(\mathsf{k}_i,\omega_i)\mathsf{E}(\mathsf{k}_j,\omega_j) ,\\ \mathsf{P}^{(3)}(\mathsf{k},\omega) &= \epsilon_0 \chi^{(3)}(\mathsf{k}=\mathsf{k}_i+\mathsf{k}_j+\mathsf{k}_k,\omega=\omega_i+\omega_j+\omega_k) \\ &\quad * \mathsf{E}(\mathsf{k}_i,\omega_i)\mathsf{E}(\mathsf{k}_i,\omega_i)\mathsf{E}(\mathsf{k}_k,\omega_k) .\end{aligned}$$

- $\chi^{(n)}$ are polar tensors describing certain material properties.
- These tensors have to be invariant with regard to all symmetry operations of the crystal (point) symmetry.
- From symmetry one thus can deduce which tensor elements are equal and which are zero.
- In crystals of centric symmetry all tensors of odd rank vanish (χ⁽²⁾, e. g., is a third-rank tensor).

・ロン ・四マ ・ヨン ・田・ 三田

- $\chi^{(n)}$ are polar tensors describing certain material properties.
- These tensors have to be invariant with regard to all symmetry operations of the crystal (point) symmetry.
- From symmetry one thus can deduce which tensor elements are equal and which are zero.
- In crystals of centric symmetry all tensors of odd rank vanish ($\chi^{(2)}$, e. g., is a third-rank tensor).

- $\chi^{(n)}$ are polar tensors describing certain material properties.
- These tensors have to be invariant with regard to all symmetry operations of the crystal (point) symmetry.
- From symmetry one thus can deduce which tensor elements are equal and which are zero.
- In crystals of centric symmetry all tensors of odd rank vanish ($\chi^{(2)}$, e. g., is a third-rank tensor).

《曰》 《聞》 《臣》 《臣》 三臣 …

- $\chi^{(n)}$ are polar tensors describing certain material properties.
- These tensors have to be invariant with regard to all symmetry operations of the crystal (point) symmetry.
- From symmetry one thus can deduce which tensor elements are equal and which are zero.
- In crystals of centric symmetry all tensors of odd rank vanish ($\chi^{(2)}$, e. g., is a third-rank tensor).

- $\chi^{(n)}$ are polar tensors describing certain material properties.
- These tensors have to be invariant with regard to all symmetry operations of the crystal (point) symmetry.
- From symmetry one thus can deduce which tensor elements are equal and which are zero.
- In crystals of centric symmetry all tensors of odd rank vanish ($\chi^{(2)}$, e. g., is a third-rank tensor).

Linear Polarization Nonlinear Polarization Crystal Symmetry

Outline

Part I: Introduction – Nonlinear Optics

Part II: Harmonic Generation

Part III: Noncollinear Harmonic Generation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Part II: Harmonic Generation

Second-Harmonic Generation

- Principle
- Phase Matching
- Quasi Phase Matching
- 4 High-Order Harmonic Generation

-2

Second-Harmonic Generation High-Order Harmonic Generation Principle Phase Matching Quasi Phase Matching

Principle Phase Matching Quasi Phase Matching

Idealized

<ロト (四) (三) (三) (三)

∃ 990

Second-Harmonic Generation High-Order Harmonic Generation Principle Phase Matching Quasi Phase Matching

Reality

∃ 920

Principle Phase Matching Quasi Phase Matching

Spatial Dependence of Field and Polarization

Fundamental Field

$$E^{(1)}(x) = E^{(1)}(0) \cdot e^{-ik_1x}$$

Second Harmonic Polarization

 $P^{(2)}(x) = \chi E^{(1)}(x) E^{(1)}(x) = \chi E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$

Second Harmonic Field

 $E^{(2)}(x) = K' \cdot P^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$

Principle Phase Matching Quasi Phase Matching

Spatial Dependence of Field and Polarization

Fundamental Field

$$E^{(1)}(x) = E^{(1)}(0) \cdot e^{-ik_1x}$$

Second Harmonic Polarization

 $P^{(2)}(x) = \chi E^{(1)}(x) E^{(1)}(x) = \chi E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$

Second Harmonic Field

 $E^{(2)}(x) = K' \cdot P^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$

Spatial Dependence of Field and Polarization

Fundamental Field

$$E^{(1)}(x) = E^{(1)}(0) \cdot e^{-ik_1x}$$

Second Harmonic Polarization

$$P^{(2)}(x) = \chi E^{(1)}(x) E^{(1)}(x) = \chi E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

Second Harmonic Field

 $E^{(2)}(x) = K' \cdot P^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$

《曰》 《聞》 《臣》 《臣》 三臣 …

Principle Phase Matching Quasi Phase Matching

Spatial Dependence of Field and Polarization

Fundamental Field

$$E^{(1)}(x) = E^{(1)}(0) \cdot e^{-ik_1x}$$

Second Harmonic Polarization

$$P^{(2)}(\mathbf{x}) = \chi E^{(1)}(\mathbf{x}) E^{(1)}(\mathbf{x}) = \chi E^{(1)}(\mathbf{0}) E^{(1)}(\mathbf{0}) \cdot e^{-i2k_1 \mathbf{x}}$$

Second Harmonic Field

 $E^{(2)}(x) = K' \cdot P^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$

Spatial Dependence of Field and Polarization

Fundamental Field

$$E^{(1)}(x) = E^{(1)}(0) \cdot e^{-ik_1x}$$

Second Harmonic Polarization

$$P^{(2)}(x) = \chi E^{(1)}(x) E^{(1)}(x) = \chi E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

Second Harmonic Field

 $m{E}^{(2)}(m{x}) = m{K}' \cdot m{P}^{(2)}(m{x}) = m{K} \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1 \mathbf{x}}$

Spatial Dependence of Field and Polarization

Fundamental Field

$$E^{(1)}(x) = E^{(1)}(0) \cdot e^{-ik_1x}$$

Second Harmonic Polarization

$$P^{(2)}(x) = \chi E^{(1)}(x) E^{(1)}(x) = \chi E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

Second Harmonic Field

 $E^{(2)}(x) = K' \cdot P^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$

Principle Phase Matching Quasi Phase Matching

Spatial Dependence of Field and Polarization

Fundamental Field

$$E^{(1)}(x) = E^{(1)}(0) \cdot e^{-ik_1x}$$

Second Harmonic Polarization

$$P^{(2)}(x) = \chi E^{(1)}(x) E^{(1)}(x) = \chi E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

Second Harmonic Field

 $E^{(2)}(x) = K' \cdot P^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$

Spatial Dependence of Field and Polarization

Fundamental Field

$$E^{(1)}(x) = E^{(1)}(0) \cdot e^{-ik_1x}$$

Second Harmonic Polarization

$$P^{(2)}(x) = \chi E^{(1)}(x) E^{(1)}(x) = \chi E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

Second Harmonic Field

$$E^{(2)}(x) = K' \cdot P^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

Spatial Dependence of Field and Polarization

Fundamental Field

$$E^{(1)}(x) = E^{(1)}(0) \cdot e^{-ik_1x}$$

Second Harmonic Polarization

$$P^{(2)}(x) = \chi E^{(1)}(x) E^{(1)}(x) = \chi E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

Second Harmonic Field

$$E^{(2)}(x) = K' \cdot P^{(2)}(x) = K \cdot E^{(1)}(0)E^{(1)}(0) \cdot e^{-i2k_1x}$$

Harmonic Field at Position x

$$E^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

 $E^{(2)}$ travels through the material with a velocity characteristic for the frequency $\omega_2 = 2\omega_1$ and wave vector k_2

$$E^{(2)}(x') = E^{(2)}(x) \cdot e^{-ik_2(x'-x)}$$

= $K \cdot E^{(1)}(0)E^{(1)}(0) \cdot e^{-ik_2x'}e^{-i(2k_1-k_2)x}$

Harmonic Field at Position x

$$E^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

 $E^{(2)}$ travels through the material with a velocity characteristic for the frequency $\omega_2 = 2\omega_1$ and wave vector k_2

$$E^{(2)}(x') = E^{(2)}(x) \cdot e^{-ik_2(x'-x)}$$

= $K \cdot E^{(1)}(0)E^{(1)}(0) \cdot e^{-ik_2x'}e^{-i(2k_1-k_2)x}$

Harmonic Field at Position x

$$E^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

 $E^{(2)}$ travels through the material with a velocity characteristic for the frequency $\omega_2 = 2\omega_1$ and wave vector k_2

$$E^{(2)}(x') = E^{(2)}(x) \cdot e^{-ik_2(x'-x)}$$

 $= \mathbf{K} \cdot \mathbf{E}^{(1)}(\mathbf{0}) \mathbf{E}^{(1)}(\mathbf{0}) \cdot \mathbf{e}^{-ik_2 x'} \mathbf{e}^{-i(2k_1-k_2)x}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Harmonic Field at Position x

$$E^{(2)}(x) = K \cdot E^{(1)}(0) E^{(1)}(0) \cdot e^{-i2k_1x}$$

 $E^{(2)}$ travels through the material with a velocity characteristic for the frequency $\omega_2 = 2\omega_1$ and wave vector k_2

$$E^{(2)}(x') = E^{(2)}(x) \cdot e^{-ik_2(x'-x)}$$

= $K \cdot E^{(1)}(0)E^{(1)}(0) \cdot e^{-ik_2x'}e^{-i(2k_1-k_2)x}$

Principle Phase Matching Quasi Phase Matching

Integration

$$E_{\text{total}}^{(2)}(x') = K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2x'} \int_0^L e^{-i(2k_1-k_2)x} dx$$

$$= \mathbf{K} \cdot \mathbf{E}_{(0)}^{(1)} \mathbf{E}_{(0)}^{(1)} \cdot \mathbf{e}^{-ik_2 x'} \frac{1}{i \Delta k} \left[\mathbf{e}^{i \Delta k L} - 1 \right]$$

$$= K \cdot \boldsymbol{E}_{(0)}^{(1)} \boldsymbol{E}_{(0)}^{(1)} \cdot \boldsymbol{e}^{-ik_2 x'} \boldsymbol{e}^{i\frac{\Delta k}{2}L} \frac{1}{i\Delta k} \left[\boldsymbol{e}^{i\frac{\Delta k}{2}L} - \boldsymbol{e}^{-i\frac{\Delta k}{2}L} \right]$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} e^{i\frac{\Delta k}{2}L} \cdot \frac{\sin(\Delta k L/2)}{\Delta k/2}$$

with

$\Delta k = k_2 - 2k_1 = \frac{2\pi}{\lambda_2} n(\omega_2) - 2\frac{2\pi}{\lambda_4} n(\omega_1) = \frac{4\pi}{\lambda_4} (n(\omega_2) - n(\omega_1))$

-2
Integration

$$E_{\text{total}}^{(2)}(x') = K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2x'} \int_0^L e^{-i(2k_1-k_2)x} dx$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} \frac{1}{i\Delta k} \left[e^{i\Delta kL} - 1 \right]$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} e^{i\frac{\Delta k}{2}L} \frac{1}{i\Delta k} \left[e^{i\frac{\Delta k}{2}L} - e^{-i\frac{\Delta k}{2}L} \right]$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} e^{i\frac{\Delta k}{2}L} \cdot \frac{\sin(\Delta k L/2)}{\Delta k/2}$$

with

$$\Delta k = k_2 - 2k_1 = \frac{2\pi}{\lambda_2} n(\omega_2) - 2\frac{2\pi}{\lambda_1} n(\omega_1) = \frac{4\pi}{\lambda_1} (n(\omega_2) - n(\omega_1))$$

(日) (종) (종) (종)

Integration

$$E_{\text{total}}^{(2)}(x') = K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2x'} \int_0^L e^{-i(2k_1-k_2)x} dx$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} \frac{1}{i\Delta k} \left[e^{i\Delta kL} - 1 \right]$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} e^{i\frac{\Delta k}{2}L} \frac{1}{i\Delta k} \left[e^{i\frac{\Delta k}{2}L} - e^{-i\frac{\Delta k}{2}L} \right]$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} e^{i\frac{\Delta k}{2}L} \cdot \frac{\sin(\Delta k L/2)}{\Delta k/2}$$

with

$$\Delta \mathbf{k} = \mathbf{k}_2 - 2\mathbf{k}_1 = \frac{2\pi}{\lambda_2} \mathbf{n}(\omega_2) - 2\frac{2\pi}{\lambda_1} \mathbf{n}(\omega_1) = \frac{4\pi}{\lambda_1} (\mathbf{n}(\omega_2) - \mathbf{n}(\omega_1))$$

(日) (종) (종) (종)

Integration

$$E_{\text{total}}^{(2)}(x') = K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2x'} \int_0^L e^{-i(2k_1-k_2)x} dx$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} \frac{1}{i\Delta k} \left[e^{i\Delta kL} - 1 \right]$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} e^{i\frac{\Delta k}{2}L} \frac{1}{i\Delta k} \left[e^{i\frac{\Delta k}{2}L} - e^{-i\frac{\Delta k}{2}L} \right]$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} e^{i\frac{\Delta k}{2}L} \cdot \frac{\sin(\Delta k L/2)}{\Delta k/2}$$

with

$$\Delta \mathbf{k} = \mathbf{k}_2 - 2\mathbf{k}_1 = \frac{2\pi}{\lambda_2} \mathbf{n}(\omega_2) - 2\frac{2\pi}{\lambda_1} \mathbf{n}(\omega_1) = \frac{4\pi}{\lambda_1} (\mathbf{n}(\omega_2) - \mathbf{n}(\omega_1))$$

(日) (图) (문) (문)

Integration

$$E_{\text{total}}^{(2)}(x') = K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2x'} \int_0^L e^{-i(2k_1-k_2)x} dx$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} \frac{1}{i\Delta k} \left[e^{i\Delta kL} - 1 \right]$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} e^{i\frac{\Delta k}{2}L} \frac{1}{i\Delta k} \left[e^{i\frac{\Delta k}{2}L} - e^{-i\frac{\Delta k}{2}L} \right]$$

$$= K \cdot E_{(0)}^{(1)} E_{(0)}^{(1)} \cdot e^{-ik_2 x'} e^{i\frac{\Delta k}{2}L} \cdot \frac{\sin(\Delta k L/2)}{\Delta k/2}$$

with

$$\Delta k = k_2 - 2k_1 = \frac{2\pi}{\lambda_2} n(\omega_2) - 2\frac{2\pi}{\lambda_1} n(\omega_1) = \frac{4\pi}{\lambda_1} (n(\omega_2) - n(\omega_1))$$

(日) (图) (문) (문)

Second-Harmonic Generation High-Order Harmonic Generation Principle Phase Matching Quasi Phase Matching

Second Harmonic Intensity

$$I^{(2)} = \mathbf{C} \cdot \mathbf{d}_{\text{eff}}^2 \cdot I^{(1)\,2} \cdot \frac{\sin^2(\Delta k \, L/2)}{(\Delta k/2)^2}$$

э.

Second-Harmonic Generation High-Order Harmonic Generation Principle Phase Matching Quasi Phase Matching

Second Harmonic Intensity

< 注→ < 注→ -

э

Image: A matrix

$$I^{(2)} = C \cdot d_{\text{eff}}^2 \cdot I^{(1)2} \cdot \frac{\sin^2(\Delta k L/2)}{(\Delta k/2)^2} \quad \text{maximized for} \quad \Delta k = 0$$

Normal dispersion $n(\omega_2) > n(\omega_1) \quad \Delta k > 0$

Birefringent Crystals

Different refractive indices for different polarization directions

Property connected with crystal symmetry

$$I^{(2)} = C \cdot d_{\text{eff}}^2 \cdot I^{(1)2} \cdot \frac{\sin^2(\Delta k L/2)}{(\Delta k/2)^2} \quad \text{maximized for} \quad \Delta k = 0$$

Normal dispersion $n(\omega_2) > n(\omega_1) \quad \Delta k > 0$

Birefringent Crystals

Different refractive indices for different polarization directions

Property connected with crystal symmetry

《口》 《圖》 《圖》 《圖》

э

$$I^{(2)} = C \cdot d_{\text{eff}}^2 \cdot I^{(1)2} \cdot \frac{\sin^2(\Delta k L/2)}{(\Delta k/2)^2} \quad \text{maximized for} \quad \Delta k = 0$$

Normal dispersion $n(\omega_2) > n(\omega_1) \quad \Delta k > 0$

Birefringent Crystals

Different refractive indices for different polarization directions

Property connected with crystal symmetry

$$I^{(2)} = C \cdot d_{\text{eff}}^2 \cdot I^{(1)2} \cdot \frac{\sin^2(\Delta k L/2)}{(\Delta k/2)^2} \quad \text{maximized for} \quad \Delta k = 0$$

Normal dispersion $n(\omega_2) > n(\omega_1) \quad \Delta k > 0$

Birefringent Crystals

Different refractive indices for different polarization directions

Property connected with crystal symmetry

$$I^{(2)} = C \cdot d_{\text{eff}}^2 \cdot I^{(1)2} \cdot \frac{\sin^2(\Delta k L/2)}{(\Delta k/2)^2} \quad \text{maximized for} \quad \Delta k = 0$$

Normal dispersion $n(\omega_2) > n(\omega_1) \quad \Delta k > 0$

Birefringent Crystals

Different refractive indices for different polarization directions

Property connected with crystal symmetry

◆□▶ ◆□▶ ◆□▶ ◆□▶ -

$$I^{(2)} = C \cdot d_{\text{eff}}^2 \cdot I^{(1)2} \cdot \frac{\sin^2(\Delta k L/2)}{(\Delta k/2)^2} \quad \text{maximized for} \quad \Delta k = 0$$

Normal dispersion $n(\omega_2) > n(\omega_1) \quad \Delta k > 0$

Birefringent Crystals

Different refractive indices for different polarization directions

Property connected with crystal symmetry

$$I^{(2)} = C \cdot d_{\text{eff}}^2 \cdot I^{(1)2} \cdot \frac{\sin^2(\Delta k L/2)}{(\Delta k/2)^2} \quad \text{maximized for} \quad \Delta k = 0$$

Normal dispersion $n(\omega_2) > n(\omega_1) \quad \Delta k > 0$

Birefringent Crystals

Different refractive indices for different polarization directions

Property connected with crystal symmetry

(日) (同) (目) (日) (日)

Birefringence – Index Surfaces

Birefringence – Phase Matching

≣.⊁

Quasi Phase Matching

Example: Periodically Poled Lithium Niobate

Quasi Phase Matching

Example: Periodically Poled Lithium Niobate

< ロ > (何 > (三 > (三 >))

QPM: Second Harmonic Intensity, same Tensor Element

QPM: Second Harmonic Intensity, same Tensor Element

QPM: Lithium Niobate, d_{33} instead of d_{31}

 $d_{31} = 4.3 \text{ pm/V}$ $d_{33} = 27 \text{ pm/V} \implies d_{eff} = 17 \text{ pm/V}$

◆□▶ ◆圖▶ ★필▶ ★필▶ - 重 - のへで

QPM: Lithium Niobate, d_{33} instead of d_{31}

QPM: Lithium Niobate, d_{33} instead of d_{31}

QPM: Lithium Niobate, d_{33} instead of d_{31}

- Atoms in High Laser Fields
- Centric Symmetry => Odd Harmonics
- Refractive Index near to 1
- Phase Matching by Gas Mixing
- Below and Above Resonance

- Atoms in High Laser Fields
- Centric Symmetry => Odd Harmonics
- Refractive Index near to 1
- Phase Matching by Gas Mixing
- Below and Above Resonance

(1日) (日) (日) (日) (日)

- Atoms in High Laser Fields
- Centric Symmetry => Odd Harmonics
- Refractive Index near to 1
- Phase Matching by Gas Mixing
- Below and Above Resonance

(日本) (日本) (日本)

- Atoms in High Laser Fields
- Centric Symmetry => Odd Harmonics
- Refractive Index near to 1
- Phase Matching by Gas Mixing
- Below and Above Resonance

(日本) (日本) (日本)

- Atoms in High Laser Fields
- Centric Symmetry => Odd Harmonics
- Refractive Index near to 1
- Phase Matching by Gas Mixing
- Below and Above Resonance

(日本) (日本) (日本)

- Atoms in High Laser Fields
- Centric Symmetry => Odd Harmonics
- Refractive Index near to 1
- Phase Matching by Gas Mixing
- Below and Above Resonance

Processes in High Laser Fields

A D > A A P >

< 注→ < 注→

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ―臣 … のへで

HHG: Timing

Outline

Part I: Introduction – Nonlinear Optics

Part II: Harmonic Generation

Part III: Noncollinear Harmonic Generation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Part III: Noncollinear Harmonic Generation

- 5 Noncollinear Frequency Doubling
 - Induced Noncollinear Frequency Doubling
 - Spontaneous Noncollinear Frequency Doubling
 - Conical Harmonic Generation
 - Domain-Induced Noncollinear Second-Harmonic Generation
 - Experiment
 - Model
 - Cylindrically Polarized Light

< /i>

Collinear and Noncollinear Harmonic Generation

Collinear and Noncollinear Harmonic Generation

Collinear Case:

$$\sum k_i = 0$$

< ロ > (何 > (三 > (三 >))
Collinear and Noncollinear Harmonic Generation

 $\sum k_i = 0$ Collinear Case:

Noncollinear Case:

 $\sum \mathbf{k}_i \neq \mathbf{0}$ yet $\sum \overrightarrow{\mathbf{k}_i} = \mathbf{0}$

(日) (同) (目) (日) (日)

-

Induced Noncollinear Frequency Doubling: Principle

 $|\mathbf{k}_2| = |\mathbf{k}_1| \cos \Theta + |\mathbf{k}_1'| \cos \Theta'$ and $|\mathbf{k}| = \frac{\omega}{c} n_p(\omega, \mathbf{k})$

 $(\omega_1 + \omega_1')n_p(\omega_1 + \omega_1') = \omega_1 n_q(\omega_1)\cos\Theta + \omega_1'n_r(\omega_1')\cos\Theta'$

$$n_p(2\omega) = n_q(\omega) \cos \Theta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Induced Noncollinear Frequency Doubling: Principle

 $|\mathbf{k}_2| = |\mathbf{k}_1| \cos \Theta + |\mathbf{k}_1'| \cos \Theta'$ and $|\mathbf{k}| = \frac{\omega}{c} n_{\rho}(\omega, \mathbf{k})$

 $(\omega_1 + \omega_1') n_p(\omega_1 + \omega_1') = \omega_1 n_q(\omega_1) \cos \Theta + \omega_1' n_r(\omega_1') \cos \Theta'$

$$n_p(2\omega) = n_q(\omega) \cos \Theta$$

Induced Noncollinear Frequency Doubling: Principle

 $|\mathbf{k}_2| = |\mathbf{k}_1| \cos \Theta + |\mathbf{k}_1'| \cos \Theta'$ and $|\mathbf{k}| = \frac{\omega}{c} n_p(\omega, \mathbf{k})$

 $(\omega_1 + \omega_1')n_p(\omega_1 + \omega_1') = \omega_1 n_q(\omega_1) \cos \Theta + \omega_1' n_r(\omega_1') \cos \Theta'$

$$n_p(2\omega) = n_q(\omega) \cos \Theta$$

Induced Noncollinear Frequency Doubling: Principle

 $|\mathbf{k}_2| = |\mathbf{k}_1| \cos \Theta + |\mathbf{k}_1'| \cos \Theta'$ and $|\mathbf{k}| = \frac{\omega}{c} n_p(\omega, \mathbf{k})$

 $(\omega_1 + \omega_1')n_p(\omega_1 + \omega_1') = \omega_1 n_q(\omega_1) \cos \Theta + \omega_1' n_r(\omega_1') \cos \Theta'$

$$n_{\rho}(2\omega) = n_{q}(\omega) \cos \Theta$$

э

Induced Noncollinear Frequency Doubling: Experiment

 Θ

3

<u>θ</u>

Induced Noncollinear Frequency Doubling

- Refractive Indices depend on
- Composition Inhomogeneities
- Doping
- Domain Orientation
- Temperature
- • •

Induced Noncollinear Frequency Doubling

・ロト ・四ト ・ヨト ・ヨト

3

- Refractive Indices depend on
- Composition Inhomogeneities
- Doping
- Domain Orientation
- Temperature
- • •

Θ

3

 $\left|\Theta'\right|$ k₂

Induced Noncollinear Frequency Doubling

- Refractive Indices depend on
- Composition Inhomogeneities
- Doping
- Domain Orientation
- Temperature
- • •

Θ

 $\frac{\Theta}{k_{0}}$

Induced Noncollinear Frequency Doubling

- Refractive Indices depend on
- Composition Inhomogeneities
- Doping
- Domain Orientation
- Temperature
- . . .

Θ

 $\left|\Theta'\right|$ k₂

Induced Noncollinear Frequency Doubling

- Refractive Indices depend on
- Composition Inhomogeneities
- Doping
- Domain Orientation
- Temperature
- . . .

Θ

 $\left|\Theta'\right|$ k₂

Induced Noncollinear Frequency Doubling

- Refractive Indices depend on
- Composition Inhomogeneities
- Doping
- Domain Orientation
- Temperature
- . . .

Θ

< 日 > (同 > (三 > (三 >))

 $\left|\Theta'\right|$ k₂

Induced Noncollinear Frequency Doubling

- Refractive Indices depend on
- Composition Inhomogeneities
- Doping
- Domain Orientation
- Temperature
- ...

Θ

< 日 > (同 > (三 > (三 >))

 $\left|\Theta'\right|$ k₂

Induced Noncollinear Frequency Doubling

- Refractive Indices depend on
- Composition Inhomogeneities
- Doping
- Domain Orientation
- Temperature
- ...

Induced Noncollinear Frequency Doubling: Results 1

Vapor Transport Equilibration (VTE) on Lithium Niobate

A. Reichert, K. Betzler: *Induced noncolinear frequency doubling: A new characterization technique for electrooptic crystals.* J. Appl. Phys. **79**, 2209–2212 (1996).

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Induced Noncollinear Frequency Doubling: Results 2

Domain Boundaries in Potassium Niobate

< 日 > (同 > (三 > (三 >))

э

Spontaneous Noncollinear Frequency Doubling: Principle

$$n_p(2\omega) = 1/2(n_q(\omega)\cos\Theta + n_r(\omega)\cos\Theta')$$

(日) (同) (目) (日) (日)

э

Spontaneous Noncollinear Frequency Doubling: Principle

$$n_p(2\omega) = 1/2(n_q(\omega)\cos\Theta + n_r(\omega)\cos\Theta')$$

э

Spontaneous Noncollinear Frequency Doubling

Again: Refractive Indices Determine Geometry

- Stray Light as Second Beam
- Θ and Θ' Auto-Adjust
- No Temperature Variation Necessary
- Cone of Harmonic Light
- Two-Dimensional Topography

Spontaneous Noncollinear Frequency Doubling

Again: Refractive Indices Determine Geometry

- Stray Light as Second Beam
- Θ and Θ' Auto-Adjust
- No Temperature Variation Necessary
- Cone of Harmonic Light
- Two-Dimensional Topography

▲御▶ ▲理▶ ▲理≯

- Again: Refractive Indices Determine Geometry
- Stray Light as Second Beam
- Θ and Θ' Auto-Adjust
- No Temperature Variation Necessary
- Cone of Harmonic Light
- Two-Dimensional Topography

(日) (日) (日)

- Again: Refractive Indices Determine Geometry
- Stray Light as Second Beam
- Θ and Θ' Auto-Adjust
- No Temperature Variation Necessary
- Cone of Harmonic Light
- Two-Dimensional Topography

・ 同 ト ・ ヨ ト ・ ヨ ト

- Again: Refractive Indices Determine Geometry
- Stray Light as Second Beam
- Θ and Θ' Auto-Adjust
- No Temperature Variation Necessary
- Cone of Harmonic Light
- Two-Dimensional Topography

・ 「 ト ・ ヨ ト ・ ヨ ト

- Again: Refractive Indices Determine Geometry
- Stray Light as Second Beam
- Θ and Θ' Auto-Adjust
- No Temperature Variation Necessary
- Cone of Harmonic Light
- Two-Dimensional Topography

- A IB M A IB M

- Again: Refractive Indices Determine Geometry
- Stray Light as Second Beam
- Θ and Θ' Auto-Adjust
- No Temperature Variation Necessary
- Cone of Harmonic Light
- Two-Dimensional Topography

< A >

< 3 > < 3 >

-

Spontaneous Noncollinear Frequency Doubling: Experiment

-

Spontaneous Noncollinear Frequency Doubling: Evaluation

《曰》 《圖》 《圖》 《圖》

-

Spontaneous Noncollinear Frequency Doubling: Evaluation

Spontaneous Noncollinear Frequency Doubling: Evaluation

K.-U. Kasemir, K. Betzler: *Detecting Ellipses of Limited Eccentricity in Images with High Noise Levels*. Image and Vision Computing **21**, 221 (2003).

A 10

Spontaneous Noncollinear Frequency Doubling: Results

Crystal Growth of Lithium Niobate - Homogeneity

K.-U. Kasemir, K. Betzler: Characterization of photorefractive materials by spontaneous noncolinear frequency doubling. Applied Physics **B 68**, 763 (1999).

 $\omega_{2}=2\omega_{1}$, general case: $\omega_{m}=m\omega_{1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

 $\omega_2=2\omega_1$, general case: $\omega_m=m\omega_1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへ⊙

 $\omega_2 = 2\omega_1$, general case: $\omega_m = m\omega_1$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへ⊙

Conical Harmonic Generation

◆□> ◆□> ◆注> ◆注> □注:

- General Case: $\mathbf{k}_m = \mathbf{2}m \cdot \mathbf{k}_1 \mathbf{k}'_m$
- $\omega_m = m \cdot \omega_1$
- Parametric Harmonic Generation
- Odd-Order Process => Always Allowed
- $\cos \Theta = n(\omega_1)/n(\omega_m)$
- Compatible with Normal Dispersion

Conical Harmonic Generation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

- General Case: $\mathbf{k}_m = \mathbf{2}m \cdot \mathbf{k}_1 \mathbf{k}'_m$
- $\omega_m = m \cdot \omega_1$
- Parametric Harmonic Generation
- Odd-Order Process => Always Allowed
- $\cos \Theta = n(\omega_1)/n(\omega_m)$
- Compatible with Normal Dispersion

《曰》 《聞》 《臣》 《臣》 三臣 …

- General Case: $\mathbf{k}_m = \mathbf{2}m \cdot \mathbf{k}_1 \mathbf{k}'_m$
- $\omega_m = m \cdot \omega_1$
- Parametric Harmonic Generation
- Odd-Order Process => Always Allowed
- $\cos \Theta = n(\omega_1)/n(\omega_m)$
- Compatible with Normal Dispersion

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- General Case: $\mathbf{k}_m = \mathbf{2}m \cdot \mathbf{k}_1 \mathbf{k}'_m$
- $\omega_m = m \cdot \omega_1$
- Parametric Harmonic Generation
- Odd-Order Process => Always Allowed
- $\cos \Theta = n(\omega_1)/n(\omega_m)$
- Compatible with Normal Dispersion

《曰》 《聞》 《臣》 《臣》 三臣 …

- General Case: $\mathbf{k}_m = \mathbf{2}m \cdot \mathbf{k}_1 \mathbf{k}'_m$
- $\omega_m = m \cdot \omega_1$
- Parametric Harmonic Generation
- Odd-Order Process => Always Allowed
- $\cos \Theta = n(\omega_1)/n(\omega_m)$
- Compatible with Normal Dispersion

《曰》 《聞》 《臣》 《臣》 三臣 …

- General Case: $\mathbf{k}_m = \mathbf{2}m \cdot \mathbf{k}_1 \mathbf{k}'_m$
- $\omega_m = m \cdot \omega_1$
- Parametric Harmonic Generation
- Odd-Order Process => Always Allowed
- $\cos \Theta = n(\omega_1)/n(\omega_m)$
- Compatible with Normal Dispersion

- General Case: $\mathbf{k}_m = \mathbf{2}m \cdot \mathbf{k}_1 \mathbf{k}'_m$
- $\omega_m = m \cdot \omega_1$
- Parametric Harmonic Generation
- Odd-Order Process => Always Allowed
- $\cos \Theta = n(\omega_1)/n(\omega_m)$
- Compatible with Normal Dispersion

- General Case: $\mathbf{k}_m = \mathbf{2}\mathbf{m} \cdot \mathbf{k}_1 \mathbf{k}'_m$
- $\omega_m = m \cdot \omega_1$
- Parametric Harmonic Generation
- Odd-Order Process => Always Allowed
- $\cos \Theta = n(\omega_1)/n(\omega_m)$
- Compatible with Normal Dispersion

Conical Harmonic Generation: Result

K. D. Moll, D. Homoelle, Alexander L. Gaeta, Robert W. Boyd: *Conical Harmonic Generation in Isotropic Materials*. Phys. Rev. Lett. **88**, 153901 (2002).

ъ

Domain-Induced Noncollinear Second-Harmonic Generation

Strontium Barium Niobate (SBN)

Arthur R. Tunyagi, Michael Ulex, Klaus Betzler: *Non-collinear optical frequency doubling in Strontium Barium Niobate*. Physical Review Letters **90**, 243901 (2003)

Domain-Induced Noncollinear Second-Harmonic Generation To be explained by a Model:

- Strontium Barium Niobate Low Birefringence
- Weak in Poled, Strong in Unpoled Samples
- Circle Ellipse Hyperbola Straight Line
- Ring is Radially Polarized (Cylindric Polarization)

$$\bullet \ \, \boldsymbol{d}_{ij} = \left(\begin{array}{cccccc} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{d}_{15} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{d}_{24} & \mathbf{0} & \mathbf{0} \\ \mathbf{d}_{31} & \mathbf{d}_{32} & \mathbf{d}_{33} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array} \right)$$

・ロト ・四ト ・ヨト ・ヨト

To be explained by a Model:

- Strontium Barium Niobate Low Birefringence
- Weak in Poled, Strong in Unpoled Samples
- Circle Ellipse Hyperbola Straight Line
- Ring is Radially Polarized (Cylindric Polarization)

$$\bullet \ \ d_{ij} = \left(\begin{array}{cccccc} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{array} \right)$$

To be explained by a Model:

- Strontium Barium Niobate Low Birefringence
- Weak in Poled, Strong in Unpoled Samples
- Circle Ellipse Hyperbola Straight Line
- Ring is Radially Polarized (Cylindric Polarization)

$$\bullet \ d_{ij} = \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{array} \right)$$

・ロン ・四マ ・ヨン ・ヨン

Cylindrically Polarized Light

Domain-Induced Noncollinear Second-Harmonic Generation

To be explained by a Model:

- Strontium Barium Niobate Low Birefringence
- Weak in Poled, Strong in Unpoled Samples
- Circle Ellipse Hyperbola Straight Line

$$\bullet \ \, d_{ij} = \left(\begin{array}{cccccc} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{array} \right)$$

To be explained by a Model:

- Strontium Barium Niobate Low Birefringence
- Weak in Poled, Strong in Unpoled Samples
- Circle Ellipse Hyperbola Straight Line
- Ring is Radially Polarized (Cylindric Polarization)

•
$$d_{ij} = \begin{pmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{pmatrix}$$

Cylindrically Polarized Light

Domain-Induced Noncollinear Second-Harmonic Generation

To be explained by a Model:

- Strontium Barium Niobate Low Birefringence
- Weak in Poled, Strong in Unpoled Samples
- Circle Ellipse Hyperbola Straight Line
- Ring is Radially Polarized (Cylindric Polarization)

•
$$d_{ij} = \left(egin{array}{ccccc} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{array}
ight)$$

(人間) (人) (人) (人) (人) (人)

< ロ > (何 > (三 > (三 >))

Domain-Induced Noncollinear Second-Harmonic Generation Momentum Diagram:

$\mathsf{k}_{g} \perp \mathsf{c}: 2\mathsf{k}_{1} \cos lpha = \mathsf{k}_{2} \cos eta, n_{1}(lpha) \cos lpha = n_{2}(eta) \cos eta$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Domain-Induced Noncollinear Second-Harmonic Generation Momentum Diagram:

 $\mathbf{k}_{g} \perp \mathbf{c}$: $2\mathbf{k}_{1} \cos \alpha = \mathbf{k}_{2} \cos \beta$, $n_{1}(\alpha) \cos \alpha = n_{2}(\beta) \cos \beta$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Domain-Induced Noncollinear Second-Harmonic Generation Momentum Diagram:

 $\mathbf{k}_{g} \perp \mathbf{c}: \mathbf{2}\mathbf{k}_{1} \cos \alpha = \mathbf{k}_{2} \cos \beta, \quad \mathbf{n}_{1}(\alpha) \cos \alpha = \mathbf{n}_{2}(\beta) \cos \beta$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Domain-Induced Noncollinear Second-Harmonic Generation Momentum Diagram:

 $k_g \perp c: 2k_1 \cos \alpha = k_2 \cos \beta, \quad n_1(\alpha) \cos \alpha = n_2(\beta) \cos \beta$

- SBN: Needle-like Domains aligned in c-Direction
- $k_g \perp c \implies \cos \beta = \text{const.} \implies$ Circular Cone

Cone Sections on Screen:

Circle – Ellipse – Hyperbola – Straight Line

- Intensity Distribution reflects Density Distribution of kg
- k–Space Spectroscopy of Domains

・ロト ・四ト ・ヨト ・ヨト ・ロト

- SBN: Needle-like Domains aligned in c-Direction
- $k_g \perp c \implies \cos \beta = \text{const.} \implies$ Circular Cone

Cone Sections on Screen:
 Circle – Ellipse – Hyperbola – Straight Line

- Intensity Distribution reflects Density Distribution of kg
- k–Space Spectroscopy of Domains

◆□▶ ◆圖▶ ★目▶ ★目▶ 目 のへで

• SBN: Needle-like Domains aligned in c-Direction

• $k_g \perp c \implies \cos \beta = \text{const.} \implies \text{Circular Cone}$

Cone Sections on Screen:
 Circle – Ellipse – Hyperbola – Straight Line

- Intensity Distribution reflects Density Distribution of kg
- k–Space Spectroscopy of Domains

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- SBN: Needle-like Domains aligned in c-Direction
- $k_g \perp c \implies \cos \beta = \text{const.} \implies \text{Circular Cone}$

Cone Sections on Screen: Circle – Ellipse – Hyperbola – Straight Line

- Intensity Distribution reflects Density Distribution of kg
- k–Space Spectroscopy of Domains

◆□▶ ◆圖▶ ★目▶ ★目▶ 目 のへで

- SBN: Needle-like Domains aligned in c-Direction
- $k_g \perp c \implies \cos \beta = \text{const.} \implies \text{Circular Cone}$

Cone Sections on Screen:
 Circle – Ellipse – Hyperbola – Straight Line

- Intensity Distribution reflects Density Distribution of kg
- k-Space Spectroscopy of Domains

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- SBN: Needle-like Domains aligned in c-Direction
- $k_g \perp c \implies \cos \beta = \text{const.} \implies \text{Circular Cone}$

Cone Sections on Screen:
 Circle – Ellipse – Hyperbola – Straight Line

- Intensity Distribution reflects Density Distribution of kg
- k-Space Spectroscopy of Domains

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Cylindrically Polarized Light

- 1 Laser
- 2 SBN Crystal
- 3 Noncollinear SHG Light
- 4 Collimation Optic

< A >

- 5 Cylindric Parallel Beam
- 6 with radial Polarisation

