
Noncollinear Frequency Conversion

Klaus Betzler

Fachbereich Physik

Ring Lecture PhD Program — Summer 2004

Klaus Betzler Noncollinear Frequency Conversion



Outline

Part I: Introduction – Nonlinear Optics

Part II: Harmonic Generation

Part III: Noncollinear Harmonic Generation

Klaus Betzler Noncollinear Frequency Conversion



Linear and Nonlinear Response
Nonlinear Optical Susceptibility

Part I: Introduction – Nonlinear Optics

x

V(x)

x

V(x)

x

V(x)

1 Linear and Nonlinear Response
Linearity
Nonlinearity
Light and Matter

2 Nonlinear Optical Susceptibility
Linear Polarization
Nonlinear Polarization
Crystal Symmetry

Klaus Betzler Noncollinear Frequency Conversion



Linear and Nonlinear Response
Nonlinear Optical Susceptibility

Linearity
Nonlinearity
Light and Matter

Linear Response

Our basic experience in physics and life:

We are living in a linear world !

Mechanics: Doubled Force ⇒ Doubled Impact

Electricity: Doubled Voltage ⇒ Doubled Current

Measurements rely on linearity:

Length, Weight, Intensity, . . .

Prices usually add up linearly:

Two apples are twice the price of one.
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Linear and Nonlinear Response
Nonlinear Optical Susceptibility

Linearity
Nonlinearity
Light and Matter

However . . .

“Physics would be dull and life most unfulfilling if all
physical phenomena around us were linear.
Fortunately, we are living in a nonlinear world.
While linearization beautifies physics, nonlinearity
provides excitement in physics.”

Y. R. Shen in The Principles of Nonlinear Optics
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Linearity
Nonlinearity
Light and Matter

Nonlinear Response

What about 100 apples ?

You get discount.

That’s sort of nonlinear response by the salesman.

And in physics ?

Hooke’s law is only valid in a limited range.

Audio signals get distorted at high intensities.

Linearity always is only an (excellent) approximation.
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Linear and Nonlinear Response
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Linearity
Nonlinearity
Light and Matter

Linear and Nonlinear Response of Matter

What happens to LIGHT in MATTER ?

?
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Linearity
Nonlinearity
Light and Matter

Linear and Nonlinear Response of Matter

Linear
Response

Nonlinear
Response

No Interaction
of Light Beams

Interaction
of Light Beams
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Linear Polarization
Nonlinear Polarization
Crystal Symmetry

Linear Polarization — we start with the simple case

Electric Field
Susceptibility

=⇒ Polarization

P(r, t ) = ε0
∫ ∞
−∞ χ(1)(r − r′, t − t ′) · E(r′, t ′)d r′dt ′

Linear susceptibility χ(1) usually strictly local (δ(r − r′)).

Plane waves E(k, ω) = E(k, ω) exp(i kr − iωt ),

Fourier transform P(k, ω) = ε0χ
(1)(k, ω)E(k, ω)

with χ(1)(k, ω) =
∫ ∞
−∞ χ(1)(r, t ) exp(−i kr + iωt )d rdt .
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Linear Polarization
Nonlinear Polarization
Crystal Symmetry

Nonlinear Polarization

P to be expanded into a power series of E

P(r, t ) = ε0

∫ ∞

−∞
χ(1)(r − r′, t − t ′) · E(r′, t ′)d r′dt ′

+ ε0

∫ ∞

−∞
χ(2)(r − r1, t − t1; r − r2, t − t2)

∗ E(r1, t1)E(r2, t2)d r1dt1d r2dt2

+ ε0

∫ ∞

−∞
χ(3)(r − r1, t − t1; r − r2, t − t2; r − r3, t − t3)

∗ E(r1, t1)E(r2, t2)E(r3, t3)d r1dt1d r2dt2d r3dt3
+ . . .
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Nonlinear Polarization – Fourier Transform

Electric field E(r, t ) =
∑

i E(k i , ωi ) ,

Polarization P(k, ω) = P(1)(k, ω) + P(2)(k, ω) + P(3)(k, ω) . . .

P(1)(k, ω) = ε0χ
(1)(k, ω) · E(k, ω) ,

P(2)(k, ω) = ε0χ
(2)(k = k i + k j , ω = ωi + ωj ) ∗ E(k i , ωi )E(k j , ωj ) ,

P(3)(k, ω) = ε0χ
(3)(k = k i + k j + kk , ω = ωi + ωj + ωk )

∗ E(k i , ωi )E(k j , ωj )E(kk , ωk ) .
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Crystal Symmetry

χ(n) are polar tensors describing certain material
properties.

These tensors have to be invariant with regard to all
symmetry operations of the crystal (point) symmetry.

From symmetry one thus can deduce which tensor
elements are equal and which are zero.

In crystals of centric symmetry all tensors of odd rank
vanish (χ(2), e. g., is a third-rank tensor).
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Spatial Dependence of Field and Polarization

Fundamental Field

E(1)(x ) = E(1)(0) · e−ik1x

Second Harmonic Polarization

P(2)(x ) = χE(1)(x )E(1)(x ) = χE(1)(0)E(1)(0) · e−i 2k1x

Second Harmonic Field

E(2)(x ) = K ′ · P(2)(x ) = K · E(1)(0)E(1)(0) · e−i 2k1x
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Harmonic Field at Position x

E(2)(x ) = K · E(1)(0)E(1)(0) · e−i 2k1x

E(2) travels through the material with a velocity characteristic
for the frequency ω2 = 2ω1 and wave vector k2

E(2)(x ′) = E(2)(x ) · e−ik2(x ′−x )

= K · E(1)(0)E(1)(0) · e−ik2x ′
e−i (2k1−k2)x
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Integration

E(2)
total (x
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(0)E(1)

(0) · e−ik2x ′
∫ L

0
e−i (2k1−k2)x dx

= K · E(1)
(0)E(1)
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[
ei∆kL − 1

]
= K · E(1)
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ei ∆k
2 L 1
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[
ei ∆k

2 L − e−i ∆k
2 L

]
= K · E(1)

(0)E(1)
(0) · e−ik2x ′

ei ∆k
2 L ·

sin (∆k L/2)

∆k /2
with

∆k = k2−2k1 =
2π

λ2
n(ω2)−2

2π

λ1
n(ω1) =

4π

λ1
(n(ω2)−n(ω1))
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Second Harmonic Intensity I(2) =C ·d 2
eff ·I

(1) 2 · sin 2(∆k L/2)
(∆k /2)2
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Phase Matching

I(2) =C ·d 2
eff ·I

(1) 2 · sin 2(∆k L/2)
(∆k /2)2 maximized for ∆k = 0

Normal dispersion n(ω2) > n(ω1) ∆k > 0

Birefringent Crystals

Different refractive indices for different polarization directions

Property connected with crystal symmetry
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Birefringence – Index Surfaces
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Birefringence – Phase Matching
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Quasi Phase Matching

Example: Periodically Poled Lithium Niobate

k2 = k1 + k′
1 + K
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QPM: Second Harmonic Intensity, same Tensor Element

0 1 2 3 4 5
Crystal Position

S
H

G
 In

te
ns

ity
 [a

.u
.]

d =⇒ d · 2/π

Klaus Betzler Noncollinear Frequency Conversion



Second-Harmonic Generation
High-Order Harmonic Generation

Principle
Phase Matching
Quasi Phase Matching

QPM: Second Harmonic Intensity, same Tensor Element

0 1 2 3 4 5
Crystal Position

S
H

G
 In

te
ns

ity
 [a

.u
.]

d =⇒ d · 2/π

Klaus Betzler Noncollinear Frequency Conversion



Second-Harmonic Generation
High-Order Harmonic Generation

Principle
Phase Matching
Quasi Phase Matching

QPM: Lithium Niobate, d33 instead of d31
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d31 = 4.3 pm/V d33 = 27 pm/V =⇒ deff = 17 pm/V
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High-Order Harmonic Generation

Atoms in High Laser Fields

Centric Symmetry =⇒ Odd Harmonics

Refractive Index near to 1

Phase Matching by Gas Mixing

Below and Above Resonance
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HHG: Timing
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K. D. Moll, D. Homoelle, Alexander L. Gaeta, Robert W. Boyd: Conical Harmonic
Generation in Isotropic Materials. Phys. Rev. Lett. 88, 153901 (2002).
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Strontium Barium Niobate (SBN)
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